Learning Inter-superpoint Affinity for Weakly Supervised 3D Instance Segmentation

نویسندگان

چکیده

Due to the few annotated labels of 3D point clouds, how learn discriminative features clouds segment object instances is a challenging problem. In this paper, we propose simple yet effective instance segmentation framework that can achieve good performance by annotating only one for each instance. Specifically, tackle extremely segmentation, first oversegment cloud into superpoints in an unsupervised manner and extend point-level annotations superpoint level. Then, based on graph, inter-superpoint affinity mining module considers semantic spatial relations adaptively generate high-quality pseudo via semantic-aware random walk. Finally, volume-aware refinement applying volume constraints objects clustering graph. Extensive experiments ScanNet-v2 S3DIS datasets demonstrate our method achieves state-of-the-art weakly supervised task, even outperforms some fully methods. Source code available at https://github.com/fpthink/3D-WSIS .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised Semantic Labelling and Instance Segmentation

Semantic labelling and instance segmentation are two tasks that require particularly costly annotations. Starting from weak supervision in the form of bounding box detection annotations, we propose to recursively train a convnet such that outputs are improved after each iteration. We explore which aspects affect the recursive training, and which is the most suitable box-guided segmentation to u...

متن کامل

Weakly Supervised Instance Segmentation using Class Peak Response

Weakly supervised instance segmentation with imagelevel labels, instead of expensive pixel-level masks, remains unexplored. In this paper, we tackle this challenging problem by exploiting class peak responses to enable a classification network for instance mask extraction. With image labels supervision only, CNN classifiers in a fully convolutional manner can produce class response maps, which ...

متن کامل

Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly locali...

متن کامل

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation

The deficiency of segmentation labels is one of the main obstacles to semantic segmentation in the wild. To alleviate this issue, we present a novel framework that generates segmentation labels of images given their image-level class labels. In this weakly supervised setting, trained models have been known to segment local discriminative parts rather than the entire object area. Our solution is...

متن کامل

Weakly Supervised RBM for Semantic Segmentation

In this paper, we propose a weakly supervised Restricted Boltzmann Machines (WRBM) approach to deal with the task of semantic segmentation with only image-level labels available. In WRBM, its hidden nodes are divided into multiple blocks, and each block corresponds to a specific label. Accordingly, semantic segmentation can be directly modeled by learning the mapping from visible layer to the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-26319-4_11